Interactivity and competition: Spoken word recognition

Brian Dillon
Shota Momma

University of Massachusetts, Amherst
Department of Linguistics

2/24/2021
Today's question: How do listeners coordinate multiple levels of representation during real-time linguistic analysis?

Test case: Spoken word recognition
Levels of representation

Semantic

Syntactic

Lexical

Phonetic

[[touch]]

VP

\sqrt{touch} \quad DP

/t\@tʃ/
He thinks he won’t get the letter...
Speech shadowing demo

- Linguistic stimuli are analyzed *incrementally*.
- Analysis occurs at multiple levels in parallel.

Marslen-Wilson 1975
Components of word recognition

Activation / access / generation function:
How are potential word candidates identified, given some sensory input?

Integration function:
How does output of recognition process relate to higher order levels of analysis (e.g. syntactic or semantic analysis)?

Selection function:
How do we make a ‘decision’ about the outcome of the recognition process?
Axes of investigation

To what degree do these stages interact? Are there isolated cognitive ‘modules’ that carry out computations at each level of representation? Or are these different functions composed into a single processing mechanism?

How does information flow in the system? Is the system strictly feedforward (bottom-up), or can higher-order information influence processing at earlier stages (top-down)? If top-down information can influence later processing, how ‘far down’ can it go?

How are lexical candidates activated in response to sensory input? Are potential candidates activated one by one (serially), or can multiple candidates be activated at once (parallel activation)? Are representations activated by searching for information serially (as in a card catalog) or via direct access (as in a keyword search)?
Logogen model (Morton, 1969)

- Words are activated in parallel in response to speech input.
- A logogen is an individual evidence accumulation unit associated with a particular lexical item.
- When a logger reaches its activation threshold, we say that the lexical item has been accessed.
- Words may differ in their activation thresholds: more frequent words might have lower thresholds.
Cohort model (Marslen-Wilson, 1987)

- All possible matching candidates are activated in parallel as the word unfolds. The set of matching candidates is called the **cohort**.
- Candidates are eliminated from consideration once they no longer match the input.
- Candidates are generated bottom-up (i.e. from the speech stream alone), but higher levels of representation may select candidates from cohort.

/k/ ➔ /kʌ/ ➔ /kʌp/ ➔ /kʌp.l/

cat ➔ cut ➔ cup ➔ cup
catch ➔ cup ➔ couple ➔ couple
candy ➔ cup ➔ cupping ➔ cupping
candle ➔ cup ➔ cupping ➔ cupping
... ➔ ... ➔ ... ➔ ...
Predictions?

- Speed to recognize non-words?
- The time-course of phoneme identification?
- Other predictions?

/cat\k/catch\k\l/candy\k\l\p/candle\k\l\p/l/

- cut
- cup
- cuddle
- cup
- couple
- cupping
- couple
Cohort model (Marslen-Wilson, 1987)

- All possible matching candidates are activated in parallel as the word unfolds. The set of matching candidates is called the cohort.
- Candidates are eliminated from consideration once they no longer match the input.
- Candidates are generated bottom-up (i.e. from the speech stream alone), but higher levels of representation may select candidates from cohort.

/cat/ → /kʌ/ → /kʌp/ → /kʌp.l/

cat → cut → cup → couple

catch → cup → couple

candy → cuddle

candle → cull

... → ... → ...
A linear regression analysis showed that there was a close relationship between these distances and the monitoring response ($r = +.89$). The variations in distance accounted for over 80% of the variance in the mean latencies for the 60 individual words containing targets. This strong correlation with phoneme-monitoring latency shows that recognition-points derived from cohort analysis have a real status in the immediate, on-line processing of the word. The subjects in this experiment were using a lexical strategy, so that their response-latencies reflected the timing of word-recognition processes, and the cohort model correctly specified the timing of these processes for the words involved.
Non-word judgments (Marslen-Wilson, 1984)

\[
\text{RT from sequence onset (ms)}
\]

\[
\text{Duration of delay from sequence onset to critical phoneme offset (ms)}
\]

/\theta^\text{w}sajz\text{η}/

/\text{s\theta{o}nκ}/
Cohort model (Marslen-Wilson, 1987)

- All possible matching candidates are activated in parallel as the word unfolds. The set of matching candidates is called the **cohort**.
- Candidates are eliminated from consideration once they no longer match the input.
- Candidates are generated bottom-up (i.e. from the speech stream alone), but higher levels of representation may select candidates from cohort.

/k/ → /kʌ/ → /kʌp/ → /kʌp.l/

cat → cut → cup → cup
catch → cup
candy → cuddle
candle → cull
... → ...
couple → couple
cupping →
word uniqueness point
Axes of investigation

To what degree do these stages interact? Are there isolated cognitive ‘modules’ that carry out computations at each level of representation? Or are these different functions composed into a single processing mechanism?

How does information flow in the system? Is the system strictly feedforward (bottom-up), or can higher-order information influence processing at earlier stages (top-down)? If top-down information can influence later processing, how ‘far down’ can it go?

How are lexical candidates activated in response to sensory input? Are potential candidates activated one by one (serially), or can multiple candidates be activated at once (parallel activation)? Are representations activated by searching for information serially (as in a card catalog) or via direct access (as in a keyword search)?
→ **Cross modal priming task:** One stimulus is presented auditorily, while a lexical decision task interrupts at a certain point. If the context activates associated meanings at the point of the decision, it should prime (speed up) the lexical decision.

TABLE 1

<table>
<thead>
<tr>
<th>Context condition</th>
<th>Ambiguous</th>
<th>Unambiguous</th>
</tr>
</thead>
<tbody>
<tr>
<td>No context</td>
<td>Rumor had it that, for years, the government building had been plagued with problems. The man was not surprised when he found several bugs, in the corner of his room.</td>
<td>Rumor had it that, for years, the government building had been plagued with problems. The man was not surprised when he found several insects, in the corner of his room.</td>
</tr>
<tr>
<td>Biasing context</td>
<td>Rumor had it that, for years, the government building had been plagued with problems. The man was not surprised when he found several spiders, roaches, and other bugs, in the corner of his room.</td>
<td>Rumor had it that, for years, the government building had been plagued with problems. The man was not surprised when he found several spiders, roaches, and other insects, in the corner of his room.</td>
</tr>
</tbody>
</table>

Visual words Displayed at "Δ"

- ANT (contextually related)
- SPY (contextually inappropriate)
- SEW (unrelated)
At short SOAs (stimulus onset asynchronies): Priming was observed for both contextually related (ANT) and contextually inappropriate words (SPY). This was not seen for unambiguous words.
At long SOAs (stimulus onset asynchronies): Priming was observed only for contextually related (ANT) words, for both ambiguous and unambiguous words.

<table>
<thead>
<tr>
<th>Ambiguity condition</th>
<th>Context condition</th>
<th>Contextually related</th>
<th>Contextually inappropriate</th>
<th>unrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguous</td>
<td>Biasing context</td>
<td>795</td>
<td>849</td>
<td>848</td>
</tr>
<tr>
<td></td>
<td>No context</td>
<td>800</td>
<td>846</td>
<td>845</td>
</tr>
<tr>
<td>Unambiguous</td>
<td>Biasing context</td>
<td>808</td>
<td>843</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>No context</td>
<td>811</td>
<td>847</td>
<td>846</td>
</tr>
</tbody>
</table>
Swinney (1979)

Short SOA: Both meanings prime

Long SOA: Appropriate meaning primes
Axes of investigation

To what degree do these stages interact? Are there isolated cognitive ‘modules’ that carry out computations at each level of representation? Or are these different functions composed into a single processing mechanism?

How does information flow in the system? Is the system strictly feedforward (bottom-up), or can higher-order information influence processing at earlier stages (top-down)? If top-down information can influence later processing, how ‘far down’ can it go?

How are lexical candidates activated in response to sensory input? Are potential candidates activated one by one (serially), or can multiple candidates be activated at once (parallel activation)? Are representations activated by searching for information serially (as in a card catalog) or via direct access (as in a keyword search)?
→ TRACE model: Lexical processing involves top-down feedback from activated guesses about the lexical item being processed.
→ **Visual world paradigm**: Experimental paradigm where participants are given instructions on how to interact with a display (e.g. *please click on the picture of a beetle*), while their eye movements are continuously tracked.

![Image of a stimulus display and a participant using a computer](image)

FIG. 3. An example of a stimulus display presented to participants.

Alloppenna et al., 1998
Computer simulations with TRACE

FIG. 2. Predicted response probabilities converted from TRACE using the scaled Luce choice rule.

FIG. 3. An example of a stimulus display presented to participants.

FIG. 4. Probability of fixating each item type over time in the full competitor condition in Experiment 1. The data are averaged over all stimulus sets given in Table 1; the words given in the figure are examples of one set.
Axes of investigation

To what degree do these stages interact? Are there isolated cognitive ‘modules’ that carry out computations at each level of representation? Or are these different functions composed into a single processing mechanism?

How does information flow in the system? Is the system strictly feedforward (bottom-up), or can higher-order information influence processing at earlier stages (top-down)? If top-down information can influence later processing, how ‘far down’ can it go?

How are lexical candidates activated in response to sensory input? Are potential candidates activated one by one (serially), or can multiple candidates be activated at once (parallel activation)? Are representations activated by searching for information serially (as in a card catalog) or via direct access (as in a keyword search)?